Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daqing Shi, ${ }^{\text {a }}{ }^{*}$ Juxian Wang, ${ }^{\text {a }}$
Liangce Rong, ${ }^{\text {a }}$ Xiangshan Wang ${ }^{\text {a }}$ and Hongwen Hu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry,
Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.119$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2-Dimethyl-3-(4-methylphenyl)-1,2-dihydroquinazolin-4(3H)-one

The title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$, was synthesized by the reaction of N-(4-methylphenyl)-2-nitrobenzamide and acetone, induced by a low-valent titanium reagent. The dihydropyrimidine ring adopts a half-chair conformation. The molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a linear chain along the b axis.

Comment

Quinazolin-4(3H)-one is an alkaloid (Chou et al., 1948). Substituted quinazolin- $4(3 H)$-ones possess a wide range of pharmacological activities, such as antibacterial (Ager et al., 1977) and anticancer (Skula et al., 1981). Low-valent reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983). We report here the crystal structure of the title compound, (I), which has been synthesized by the reaction induced by a low-valent titanium reagent.

(1)

The dihydropyrimidine ring adopts a half-chair conformation (Fig. 1 and Table 1). Atoms N1, C9, C10, C11 and N2 are coplanar (plane 1, the deviations from each atom to the plane

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 29 September 2003
Accepted 6 October 2003
Online 15 October 2003

Figure 2
A molecular packing diagram of (I), viewed along the b axis.
are less than $0.07 \AA$), while C 8 lies out of the plane by 0.537 (2) \AA. The dihedral angle between plane 1 and the fused benzene ring C10-C15 is $1.61(1)^{\circ}$. Because of the existence of conjugation, the distances $\mathrm{N} 1-\mathrm{C} 9[1.356$ (2) \AA] and $\mathrm{N} 2-\mathrm{C} 11$ $\left[1.367\right.$ (2) \AA] are significantly shorter than the typical $\mathrm{Csp}{ }^{2}-\mathrm{N}$ bond distance (1.426 \AA; Lorente et al., 1995). The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a linear chain along the b axis (Fig. 2 and Table 2).

Experimental

The title compound, (I), was prepared by the reaction of N-(4-methylphenyl)-2-nitrobenzamide with acetone induced by a lowvalent titanium reagent ($\mathrm{TiCl}_{4} / \mathrm{Zn}$); m.p. $528-529 \mathrm{~K}$. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

```
\(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\)
\(M_{r}=266.33\)
Monoclinic, \(P 2_{\mathrm{d}} / n\)
\(a=11.917\) (2) A
\(b=6.911\) (1) \(\AA\)
\(c=17.821\) (4) \(\AA\)
\(\beta=98.81\) (1) \({ }^{\circ}\)
\(V=1450.4(5) \AA^{3}\)
\(Z=4\)
```

```
\(D_{x}=1.220 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 34
        reflections
\(\theta=3.2-14.8^{\circ}\)
\(\mu=0.08 \mathrm{~mm}^{-1}\)
    \(T=295\) (2) K
    Block, colorless
    \(0.56 \times 0.52 \times 0.32 \mathrm{~mm}\)
```

$\theta_{\text {max }}=25.5^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 8$
$l=-21 \rightarrow 21$
3 standard reflections
every 97 reflections
intensity decay: 2.5%

```
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0643 P)^{2}\right]\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.14 \mathrm{e}_{\AA^{-3}}\)
\(\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}\)
Extinction correction: SHELXTL
    Extinction coefficient: 0.0114 (16)
```

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{O}-\mathrm{C} 9$	$1.2336(19)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.449(2)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.356(2)$	$\mathrm{C} 8-\mathrm{C} 17$	$1.509(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.444(2)$	$\mathrm{C} 8-\mathrm{C} 16$	$1.516(3)$
N1-C8	$1.501(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.468(2)$
N2-C11	$1.367(2)$		
C9-N1-C5	$118.7(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 16$	$109.32(15)$
C9-N1-C8	$122.16(15)$	$\mathrm{O}-\mathrm{C} 9-\mathrm{N} 1$	$121.38(16)$
C5-N1-C8	$117.89(14)$	$\mathrm{O}-\mathrm{C} 9-\mathrm{C} 10$	$121.94(16)$
C11-N2-C8	$119.65(16)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$116.60(15)$
N2-C8-C17	$106.86(17)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$122.15(18)$
N1-C8-C17	$110.75(16)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$118.82(17)$
N2-C8-C16	$111.57(16)$		
C9-N1-C5-C6	$-81.4(2)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9-\mathrm{O}$	$-171.53(16)$
C8-N1-C5-C6	$86.1(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$	$-174.09(16)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$46.6(2)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$155.19(18)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 9-\mathrm{O}$	$-4.6(2)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$-28.5(3)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 0 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(2)$	$2.14(2)$	$2.978(2)$	$170.9(19)$

Symmetry code: (i) $x, 1+y, z$.
The H atom bonded to N 2 was refined isotropically. The other H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Foundation of the 'Surpassing Project' of Jiangsu Province, the Natural Science Foundation of the Education Committee of Jiangsu Province (No. 03KJB150136) and the Key Laboratory of Organic Synthesis, Suzhou University, for financial support.

References

Ager, I. R., Harrison, D. R., Kennewell, P. D. \& Taylor, J. B. (1977). J. Med. Chem. 20, 379-386.
Chou, T. Q., Wu, F. Y. \& Kao, Y. S. (1948). J. Am. Chem. Soc. 70, 1765-1767.
Lorente, A., Galan, C., Fonseca, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skula, S. K., Agnihotri, A. K. \& Chowdhary, B. L. (1981). Indian Drugs, 19, 5960.

